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The bipolariton model and the concept of
excitonic–biexcitonic mixed modes in semiconductors
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Geo Milev Blvd, 1574 Sofia, Bulgaria
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Abstract. An alternative approach to the so called bipolariton concept has been proposed. We
have shown that the bipolariton approximation can indeed be used for calculating the elementary
excitation spectrum in the photon–exciton–biexciton system in its biexciton part. The bipolariton
concept does not provide the correct spectrum in the excitonic-polariton energy part, where the
existence of four-particle electron–hole bound states should be considered. In order to go beyond
the bipolariton approximation we developed a Green function formalism for the theory of an
interacting electron–photon system in which photons, excitons and biexcitons are treated on an
equal level. Our approach is a completely microscopic treatment and is based on the assumption
that the excitons and biexcitons are two- and four-particle bound states, formed by electrons
and holes. The method of Legendre transforms is used to derive a set of nine independent exact
equations for the corresponding vertex and Green functions. Knowledge of the solutions of
the above equations provide the excitation energies of the quasiparticles (excitonic–biexcitonic
polaritons) formed by coupling of photons with excitons and biexcitons. Those elementary
excitations manifest themselves as common poles of the photon propagator, two- and four-
particle electron–hole Green functions.

1. Introduction

It is a well known fact that the interaction of light with the polarization of a crystal
leads to the coupling of the photons with elementary excitations of the matter into new
quasiparticles. The quanta of those mixed states are called polaritons. The polariton theory
of light propagation in semiconductors has received much attention, because the theory is
needed for the interpretation of optical spectra of crystals. In what follows we will consider
the interaction of light with the polarization in semiconductors, considering the ions fixed
at their equivalent positions, i.e. we assume the polarization is caused by the collective
electronic excitations. In this case the system of interest consists of a radiation field and
a material system. Since, we consider the ions fixed at their equilibrium positions, the
material system is made up of electrons in a periodical lattice potential. The radiation
and the matter interact via an electron–photon interaction. Although in an ideal crystallized
semiconductor excitons and biexcitons are the energetically lowest electronic excitations, the
biexciton contribution to the polariton formation and vice versa, the polariton contribution
to the biexciton states, have been considered in a small number of articles. Most of them are
concerned with the case when the semiconductor has been driven to a non-equilibrium state
by an intensive coherent pump wave. If the pump wave is treated classically by replacing
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the exciton and photon pump operators by complex numbers, a strongly non-equilibrium
excitonic–biexcitonic polariton eigenmode which follows dynamically the pump intensity
can be introduced (Ivanovet al 1991). In the opposite case, i.e. without an intensive pump
wave, there exist equilibrium thermodynamic stares which can be described by using the
equilibrium Green function technique. In this case the system of interest can be theoretically
investigated by using two different methods: a phenomenological approach and a direct
microscopic treatment. According to the first one, the initial electron–photon system is
replaced by the system of interacting excitons and photons. In this approach the excitons
are boson excitations with a dispersion depending on the number of phenomenological
parameters, while the biexcitons are considered as compound particles formed by coupling
of two excitons due to the exciton–exciton attractive potential. The phenomenological
approach is based on the procedure of replacing the fermion creation and annihilation
operators for one-electron states by Bose creation and annihilation operators for exciton
states. This procedure is correct only in the limitNa3

x � 1, whereN is the concentration
of excitons excited by light andax is the exciton Bohr radius. But, as is well known, at
low temperatures the system of Bose particles with attractive interaction between the boson
particles (excitons) is unstable against spontaneous contraction. For this reason one has to
introduce two equivalent types of exciton with the same parameters, both with total spin
zero. The only distinction is that the excitons of the different types attract each other whereas
excitons of the same type have a repulsive interaction. This assumption leads simultaneously
to the existence of biexcitons as bound complexes of two excitons of different types and
the stability of the many-particle (boson) system against spontaneous contraction. The
two types of exciton may be considered as corresponding to singlet excitons with mutual
opposite directions of electron (hole) spins, while in real systems triplet excitons also exist.
According to the phenomenological approach, the initial electron–photon system can be
replaced by the exciton–photon system, described by the following Hamiltonian (Ivanov
et al 1991):

HM =
∑
σ,p

{
ωxpB

+
σ,pBσ,p + ωγpα+σ,pασ,p +

i�c
2
(α+σ,pBσ,p − ασ,pB+σ,p)

}

+1

2

∑
σ,σ ′

∑
,p,k,q

Wσσ ′(q)B
+
σ,pB

+
σ ′,kBσ ′,k+qBσ,p−q. (1a)

Hereασ,p andBσ,p are the photon and exciton Bose operators, respectively. The symbols
σ, σ ′ = 1, 2 refer to the above-mentioned two types of exciton and to the two possible
circular polarizations of the photons;ωxp andωγp are the exciton and photon dispersions,
respectively. The polariton parameter�c is defined in terms of the longitudinal–transverse
splitting 1LT : �c =

√
2ωt1LT , whereωt = ωxp=0. The explicit form of the potential

Wσσ ′(q) is given in the paper by Sheboul and Ekardt (1976). This potential is repulsive
for two excitons withσ = σ ′ and attractive for the excitons withσ 6= σ ′, which leads
to biexciton formation. The problem of the energy spectrum of the system, described by
Hamiltonian (1a), has been solved by Ivanov and Haug (1993, 1995a, b). The authors have
proposed and analysed the so-called bipolariton model. According to the bipolariton concept
the excitonic–biexcitonic polariton eigenmodes do not exist. The elementary excitation
spectrum consists of two types of quasiparticle: two excitonic-polariton branchesωµ(Q)
(the upper (µ = +) and the lower (µ = −))

ωµ(Q) = ω±(Q) = 1
2[(ωxQ + ωγQ)±

√
(ωxQ − ωγQ)2+�2

c ] (1b)
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and the renormalized biexcitons (bipolaritons)�̃m(Q) (m is the complete quantum number).
The bipolariton ground state energy�̃0(Q) has a complex value:

�̃0(Q) = �0(Q)+10(Q)− i
00(Q)

2
(1c)

where�0(Q) is the biexciton ground state energy,10(Q) is the radiative renormalization
of the biexciton ground state (the biexciton Lamb shift) and00(Q) is the inverse biexciton
radiative lifetime. The two polariton branches (1b) manifest themselves as common poles of
photon and exciton Green functions, while the bipolaritons are the poles of the two-exciton
Green function.

The other possible way to treat the system of interest is to use the direct microscopic
approach, which is based on the assumption that the excitons and biexcitons are two-
(one electron and one hole) and four-particle (two electrons and two holes) bound states,
respectively. In view of the fact that in most of the papers related to our problem excitons
are considered without internal structure, there may be a need to clarify the motivations
for using the direct microscopic treatment. Firstly, this method does not make use of
the complicated and approximate procedure of replacing the fermion operators for one-
electron states by Bose operators for exciton states. Secondly, the functional technique
combined with the method of the Legendre transforms can be successfully applied, because
the corresponding action does not depend on the product of four field operators, as in
the case of the Hamiltonian (1a). Thus, the many-body aspect of the bound state can be
dealt with more systematically, so all possible correlation and screening effects are included
in principle. Thirdly, this approach provides a simultaneous treatment of the exchange
interaction, local-field corrections and band degeneracy. In the direct microscopic treatment
one has to investigate the system which consists of a radiation field, described by the action
S
(ω)

0 and a material system. In our case the material system is the semiconductor, which
can be described by the action for non-interacting electrons in a periodical lattice potential
S
(e)

0 . The radiation and the matter interact via an electron–photon interaction, described by
the actionS(e−ω). In terms of the field theory we deal with a boson (photon) fieldAα(z)
interacting with a fermion field9̄(y) (or 9(x)) at finite temperatures. Herez = {ρ, ν},
y = {r, σ, u} andx = {r′, σ ′, u′} are composite variables, wherer, r′, ρ are radius vectors
and σ, σ ′ are spin indices. According to the finite-temperature field theory (Matsubara
1955), the variablesu, u′, v range from 0 toβ = (kBT )

−1, whereT is the temperature,
kB being the Boltzmann constant. The action of the system which takes into account the
so-called ‘local-field’ effect has the following form (Koinov and Glinskii 1988):

S1 = S(e)0 + S(ω)0 + S(e−ω) + S(e−e) (2a)

where

S
(e)

0 = 9̄(y)G(0)−1(y, x)9(x) (2b)

S
(ω)

0 = 1
2Aα(z)D

(0)−1
αβ (z, z′)Aβ(z′) (2c)

S(e−ω) = 9̄(y)0(0)α (y, x|z)9(x)Aα(z) (2d)

S(e−e) = − 1
29̄(y)9(x)0̃

(0)
α (y, x|z)D̃(0)

αβ (z, z
′)0̃(0)β (y

′, x ′|z′)9̃(y ′)9(x ′). (2e)

HereG(0)−1(y, x) is the inverse one-particle Green function for the system of non-interacting
electrons in a periodical lattice potential.D(0)−1

αβ (z, z′) and0(0)α are the inverse free photon
propagator (in a gauge, when the scalar potential is equal to zero), and the ‘bare’ electron–
photon vertex, respectively.

We notice that in the above equations there are quantities, such asAα(z), D
(0)
αβ (z, z

′),
0(0)α (y, x|z), which depend on the photon variablesz, z′. Their Fourier transforms contain
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only components with wavevectors within the Brillouin zone. The Fourier transforms of
the quantities with the tilde symbol̃Aα(z), D̃

(0)
αβ (z, z

′), 0̃(0)α (y, x|z) contain components with
wavevectorsGn +Q (Gn denotes a reciprocal-lattice vector). The actionS(e−e) describes
the short-range part of the electron–electron interaction.

We have recently solved the problem of the energy spectrum of the system under
consideration by using the direct microscopic treatment and the Green function method
(Koinov 1996). The main result, obtained in this paper, is that even in a case without a pump
wave the excitonic–biexcitonic-polariton eigenmodes exist. Those elementary excitations
manifest themselves as common poles of photon, and two- and four-particle electron–hole,
Green functions. In what follows we will show that the excitonic–biexcitonic-polariton
spectrum consists of three branches�̃i(Q), i = 1, 2, 3. They can be determined by solving
the following equation:

�̃−�0(Q)− |A+(Q)|2
�̃− ωexc.pol.+ (Q)

− |A−(Q)|2
�̃− ωexc.pol.− (Q)

= 0. (3a)

Hereωexc.pol.± (Q) are the two (upper and lower) excitonic–polariton energies,�0(Q) is the
biexciton ground state energy andA±(Q) are the matrix elements of the interaction between
the biexcitons and the exciton components of the corresponding excitonic polaritons. For
small wavevectors|Q| � Q0 = (√ε0/c)ωt the first excitonic–biexcitonic-polariton branch
is almost identical to the photon-like lower excitonic-polariton branch:

�̃1(Q) ≈ ωexc.pol.− (Q) (3b)

while the other branches are defined as follows:

�̃2,3(Q) = 1
2[ωexc.pol.+ (Q)+�0(Q)∓

√
(ω

exc.pol.
+ (Q)−�0(Q))2+ 4|A+(Q)|2]. (3c)

In the opposite case|Q| � Q0 = (√ε0/c)ωt the third excitonic–biexcitonic branch̃�3(Q)
is identical to the photon-like upper excitonic-polariton branch:

�̃3(Q) ≈ ωexc.pol.+ (Q) (3d)

while the other two branches are

�̃1,2(Q) = 1
2[ωexc.pol.− (Q)+�0(Q)∓

√
(ω

exc.pol.
+ (Q)−�0(Q))2+ 4|A−(Q)|2]. (3e)

The purpose of this paper is to clarify how the concept of excitonic–biexcitonic-polariton
mixed modes is connected with the bipolariton model. We will also discuss some major
problems of the bipolariton model, which in our opinion cannot be solved in the frame of
the phenomenological approach.

2. Phenomenological approach

2.1. The elementary excitation spectra in the zero-order approximation

Quite generally, to determine the positions and widths of the excitation energies in the
system under consideration, one may search for the poles of the corresponding exact
Green functions. It is well known that all Green functions can be obtained by functional
differentiation from the generating functional for the connected Green functionsZ[I, J ]
which is defined as follows:Z[I, J ] = i lnW [I, J ], whereI andJ are the sources of the
photon and exciton fields, and

W [I, J ] =
∫

Dµ(α,B)exp{i[SM + Iσ,pασ,p + Jσ,pBσ,p]}. (4a)
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The actionSM , which corresponds to the Hamiltonian (1a), has the form:

SM = 1

2
ασ,pD

−1
0 (p, ω)ασ,p + 1

2
Bσ,pG

−1
0 (p, ω)Bσ,p + �c

2
ασ,pBσ,p

+1

2
Wσσ ′(q)Bσ,kBσ ′,pBσ ′,p+qBσ,k−q. (4b)

Here ασ,p and Bσ,p are boson fields. In this paper we use the summation–integration
convention: that repeated variables are summed up or integrated over. The free-particle
retarded photonD0(p, ω) and excitonG0(p, ω) Green functions are given by

D0(p, ω) = 1

ω − ωγp + i0+
G0(p, ω) = 1

ω − ωxp + i0+
. (4c)

In (4a) the measure Dµ is given by Dµ = constant× dα dB, where the normalization
constant is chosen in such a manner that

∫
Dµ exp(iSM) = 1.

Since the functional measure Dµ must be invariant under the translationsB ⇒ B+ δB,
α ⇒ α + δα, the following Schwinger equations (also known as Dyson equations) occur:

D−1(p, ω) = D−1
0 (p, ω)−5(p, ω) (5a)

G−1(p, ω) = G−1
0 (p, ω)−6(p, ω). (5b)

Here5(p, ω) and6(p, ω) are the proper self-energy part of the photons and the exciton
mass operator, respectively. Both of them can be written as a sum of a polariton component
(5�c(p, ω) or6�c(p, ω)) and a component which depends on the exciton–exciton attractive
potential (5W12(p, ω) or 6W12(p, ω)):

5(p, ω) = 5�c(p, ω)+5W12(p, ω) =
�2
c

4
G0(p, ω)+5W12(p, ω) (6a)

6(p, ω) = 6�c(p, ω)+6W12(p, ω) =
�2
c

4
D0(p, ω)+6W12(p, ω). (6b)

Due to the last term in the right-hand side of the action (4b), the explicit forms of5W12(p, ω)
and6W12(p, ω) contains termsW12〈αBBB〉 andW12〈αBBBB〉, respectively. In the lowest
order of the exciton–exciton attraction the Bethe–Salpeter equation for the two-particle
exciton Green functionK has the form:

K(p, q,K;ω) = K0(p, q,K;ω)+
∑
l,l′
K0(p, l,K;ω)W12(l− l′)K(l′, q,K;ω) (7a)

whereK0 is the free two-exciton propagator

K0(p, q,K;ω) = δpq 1

2π i

∫
d�G

(
−q + K

2
,−�+ 1

2
ω

)
G

(
p+ K

2
, �+ 1

2
ω

)
. (7b)

We note that the terms5W12(p, ω) and6W12(p, ω) lead to the biexciton contributions
to the poles of the photon and exciton Green functions, while the term6�c(p, ω) in the
exciton Green function (5b) gives the polariton contribution to the two-exciton bound states.

In the zero-order approximation, the polariton contribution to the two-exciton bound
states and the biexciton contribution to the polariton states can be neglected. In the range of
validity of this approximation5W12(p, ω) and6W12(p, ω) should be vanishingly small. In
this case5�c(p, ω) and6�c(p, ω) are the dominant parts of the proper self-energy of the
photons and the exciton mass operator, respectively. Thus, one has the specific case where
the excitons and photons are coupled into excitonic polaritons. In this approximation there
exist two excitonic-polariton branchesωµ(p) (the upper (µ = +) and the lower (µ = −)):

ωµ(p) = ω±(p) = 1
2[(ωxp + ωγp )±

√
(ωxp − ωγp )2+�2

c ] (8a)
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which manifest themselves as common poles of the photon and exciton Green functions,
defined as follows:

G̃(p, ω) =
(
G−1

0 (p, ω)− �
2
c

4
D0(p, ω)

)−1

=
∑
µ=±

8µ(p, ω)

ω − ωµ(p)+ i0+
(8b)

D̃(p, ω) =
(
D−1

0 (p, ω)− �
2
c

4
G0(p, ω)

)−1

=
∑
µ=±

ϕµ(p, ω)

ω − ωµ(p)+ i0+
. (8c)

The functions8µ (or ϕµ) characterize the distribution of the exciton (or photon) component
between the upper and lower polariton branches:

8µ(p, ω) = (µ.1) ωµ(p)(ω − ωγp )
ω(ω+(p)− ω−(p)) (8d)

ϕµ(p, ω) = (µ.1)
ωµ(p)(ω − ωxp)

ω(ω+(p)− ω−(p)) . (8e)

In the zero-order approximation the free two-exciton propagatorK0 can be calculated by
using the Green functionsG0(p, ω) instead of the exact one:

K0(p, q,K;ω) = δpq(ω − ωxp−K/2− ωx−p−K/2+ i0+)−1. (9a)

In this approximation the poles of the two-exciton Green function�m(K) (m is the total
quantum number) determine the biexciton energy. If we restrict the range of frequenciesω

near to the neighbourhood of position�m(K), we may write:

K(p, q,K;ω) ≈ 9mK(p)9
∗
mK(q)

ω −�m(K)+ i0+
(9b)

where9mK(p) is the Fourier transforms of the corresponding biexciton eigenfunctions. By
comparing the residues of both sides of the Bethe–Salpeter equation (7a) we obtain the
following Schr̈odinger equation in the momentum representation:∑
q

{[ωxp+K/2+ ωx−p+K/2]δpq +W12(p− q)}9mK(q) = �m(K)9mK(p). (9c)

Thus, in the zero-order approximation the quasiparticles in the system under consideration
are of two types: excitonic polaritons and biexcitons.

2.2. Polariton contribution to the biexciton spectra

Due to the terms5W12(p, ω) and6W12(p, ω) the analysis of Bethe–Salpeter equation (7a) is
a complicated problem. A possible approximation to simplify the task is to assume that the
branches in the low-energy part of the spectrum are mostly excitonic polaritons with a small
biexciton contribution (that can be neglected), and the high-energy part is mostly a biexciton
one with a small polariton content. This is the so-called bipolariton approximation. In the
range of validity of this approximation5W12(p, ω) and6W12(p, ω) should be vanishingly
small. In this case5�c(p, ω) and6�c(p, ω) are the dominant parts of the proper self-energy
of the photons and the exciton mass operator, respectively. Thus, one has the specific case
where the excitons and photons are coupled into excitonic polaritons, while the biexciton
states are renormalized due to the polariton effect.

By comparing the residues of both sides of the equation (7a) the following Bethe–
Salpeter equation for determining the renormalized (bipolariton) wavefunction9̃ν(p,K)
and the corresponding energy�̃ν(K) is obtained:

9̃ν(p,K) = K0(p,p,K; �̃ν(K))
∑
q

W12(p− q)9̃ν(q,K) (10a)
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where

K0(p, q,K;ω)
=δpq

∑
µ,µ′=±

8µ(−p+K/2, ω − ωµ′(−p+K/2))8∗µ(p+K/2, ωµ′(p+K/2))
ω − ωµ(−p+K/2)− ωµ′(p+K/2)+ i0+

.

(10b)

The renormalized biexciton ground-state wavefunction9̃0(p,K) and energy�̃0(K) can
be determined by solving the equation:

9̃0(p,K) = K0(p,p,K; �̃0(K))
∑
q

W12(p− q)9̃0(q,K). (10c)

A similar equation was first derived by Ivanov and Haug (1993), but instead of (10b), the
following propagator has been used:

K
I,H
0 (p,p,K;ω) = δpq

8−(−p+K/2, ω−(−p+K/2))8∗−(p+K/2, ω−(p+K/2))
ω − ω−(−p+K/2)− ω−(p+K/2)+ i0+

.

(10d)

This form of the propagator follows from (10b) when: (i) the lower polariton branchω−(p)
is taken into consideration; (ii) the following approximation�̃0(K) ≈ ω−(p +K/2) +
ω−(−p+K/2) has been assumed.

Let p0 = p0(K) denote the root of the equation

�̃0(K)− ωµ′
(
p0+ K

2

)
+ ωµ

(
−p0+ K

2

)
= 0.

The existence of the root of the above equation leads to the complex value of the
renormalized biexciton energỹ�0(K) = Re�̃0(K) + i Im �̃0(K) (in the case when
Im �̃0(K) = 0, the bipolariton energỹ�0(K) is a pole not only of two-particle Green
functionK, but of the propagator (10b) as well).

The Bethe–Salpeter equation (10c) (with K0 = KI,H
0 ) has been numerically solved by

Ivanov and Haug (1995a, b) for the case of CuCl (the biexciton ground state at the point
K = 0 is �0 = 6.362 eV). The obtained biexciton Lamb shift at the pointK = 0 and the
corresponding radiative lifetime are:10 = 0.103 meV and00 = 27.4 µeV.

The main problem with the bipolariton approximation is that this approximation does not
provide the correct elementary excitation spectrum in the excitonic-polariton energy part,
since the existence of the biexcitons may modify the excitonic-polariton states. Beyond
the bipolariton approximation, the problem becomes much more complicated, since in
this case, the excitonic polaritons are no longer stable states, as in the bipolariton model.
5W12(p, ω) and6W12(p, ω) describe both the decay of the excitonic-polariton states and the
renormalization of the upper and lower polariton branches due to the biexciton states.

As emphasized earlier, due to the last term in the action (4b), going beyond the
bipolariton approximation and including5W12(p, ω) and6W12(p, ω) terms in calculations
is very difficult to accomplish not only by using the diagrammatic perturbation theory,
but by employing the field-theoretical technique as well. We, therefore, turn to the direct
microscopic treatment of the initial electron–photon system.

3. Direct microscopic approach

3.1. Generating functional for connected Green functions and Schwinger equations

The method used in what follows is a completely microscopic treatment, which is based
on the assumption that the biexcitons are four-particle (two electrons and two holes) bound
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states. The starting point of the method we now wish to apply is the statement that all
Matsubara Green functions can be obtained by functional differentiation from the generating
functional for the connected Green functionZ[J,M,N ] which is defined as follows:

Z[J,M,N ] = lnW [J,M,N ] (11a)

whereJ is the source of the photon field;M andN are the two- and four-particle electron–
hole sources and

W [J,M,N ] =
∫

Dµ(9̄,9,A)exp{S + Jα(z)Aα(z)− 9̄(y)M(y, x)9(x)
+9̄(y)9̄(y ′)N(y, y ′; x, x ′)9(x)9(x ′)}. (11b)

The measure Dµ is given by Dµ+ constant d̄9 d9 dA, where the normalization constant is
chosen in such a manner that

∫
Dµ exp(S) = 1. The sourceN(y, y ′; x, x ′) is antisymmetric

over y, y ′ andx, x ′ arguments:N(y, y ′; x, x ′) = −N(y ′, y; x, x ′) = −N(y, y ′; x ′, x).
As a preliminary step, we shall define the Green functions by using the generating

functional and functional differentiation over the corresponding sources (all functional
derivatives over the fermion fields and over the sources of the fermion type are left-handed
ones and after the functional differentiation one should setJ = M = N = 0).

Photon Green function.

Dαβ(z, z
′) = −〈T̂v{Aα(z)Aβ(z′)}〉 = − δ2Z

δJα(z)δJβ(z′)
. (11c)

One-particle electron Green function.

G(x, y) = −〈T̂u{9(x)9̄(y)}〉 = − δZ

δM(y, x)
. (11d)

Two-particle electron–hole Green function.

K

(
x y ′

y x ′

)
= −〈T̂u{9̄(y)9(x)9̄(y ′)9(x ′)}〉 = − δ2Z

δN(y, x)δM(y ′, x ′)
. (11e)

Four-particle electron–hole Green function.

R

(
x21 y43

y21 x43

)
= −〈T̂u{9̄(y3)9̄(y4)9(x3)9(x4)9̄(y1)9̄(y2)9(x1)9(x2)}〉

= − δ2Z

δN(y12; x12)δN(y34; x34)
(11f)

whereT̂ is a u- (or u′, v-) ordering operator,y12 = {y1, y2}, x12 = {x1, x2} are composite
variables and the brackets〈Ô〉 on an operatorÔ mean that the thermodynamic average is
taken.

Electron-photon vertex function.

0α(y, x|z) = −δG
−1(y, x)

δJβ(z′)
D−1
αβ (z

′, z). (11g)

The rest of the functional derivatives ofZ with respect to the sources are:

Rα(z) = − δZ

δJα(z)
1(x21; y21) = − δZ

δN(y12; x12)
(11h)

Yα(x, y|z)=− δ2Z

δJα(z)δM(y, x)
Xα(x21, y21|z) = − δ2Z

δJα(z)δN(y12, x12)
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Z(x21, y21|x, y) = − δ2Z

δM(y, x)δN(y12, x12)
. (11i)

As a consequence of the fact that the measure d9̄ d9 dA is invariant under the translations
9̄ ⇒ 9̄ + δ9̄; A ⇒ A + δA one can derive the Schwinger equations which in our case
have the form:

−D(0)−1
αβ (z, z′)Rβ(z′)+ 0(0)α (y, x|z)G(x, y)+ Jα(z) = 0 (12a)

G−1(y1, x1)=G(0)−1(y1, x1)−M(y1, x1)=6(y1, x1)−2N(y12; x34)1(x43; y25)G
−1(y5, x1)

(12b)

[G(0)−1(y1, x2)−M(y1, x2)]1(x21; y43) = Asymm
[y3,y4]

{δ(y1− y3)G(x1, y4)} + T (y1, x1|y43)

+2N(y15; x56)Z(x65, y43|x1, y5) (12c)

where the symbol Asymm
[y3,y4]

{δ(y1 − y3)G(x1, y4)} means antisymmetrization over the set of

variables [y1, y2].
The mass operator6 in (12b) has the form:

6(y1, x1) = 0(0)α (y1, x1|z)Rα(z)− 0(0)α (y1, x2|z)G(x2, y2)0β(y2, x1|z′)Dαβ(z, z
′)

−0̃(0)α (y1, x2|z)D̃(0)
αβ (z, z

′)0̃(0)β (y3, x3|z′)K
(
x3 y2

y3 x2

)
G−1(y2, x1)

−0̃(0)α (y1, x1|z)D̃(0)
αβ (z, z

′)0̃(0)β (y2, x2|z′)G(x2, y2). (13a)

The operatorT (y1, x1|y43) in (12c) is called the polarization operator of the four-particle
Green function and has the form:

T (y1, x1|y43) = 0(0)α (y1, x2|z)1(x21; y43)Rα(z)− 0(0)α (y1, x2|z)δ1(x21; y43)

δJα(z)

−0̃(0)α (y1, x3|z)D̃(0)
αβ (z, z

′)0̃(0)β (y2, x2|z′)Z(x32, y43|x1, y2). (13b)

Since all variables in the Schwinger equations (12) are essentially the functional derivatives
of Z with respect to the sources, one can say that the Schwinger equations are equations
for the generating functionalZ.

3.2. Legendre transform and equations for Green and vertex functions

The basic idea in our method is to use the Legendre transform in order to derive a set of exact
equations for the Green functions and vertex functions. Legendre transforms have appeared
in a wide variety of roles in both quantum field theory and statistical mechanics. As we
will see in what follows there is probably no need to advertise the utility of the Legendre
transform in polariton theory. It is convenient to treat (11d) and (11h) as definitions for
functionalR[J,M,N ], G[J,M,N ] and1[J,M,N ]. If those functionals are invertible with
inversesJ [R,G,1], M[R,G,1] andN [R,G,1], then we define the Legendre transform
by

V [R,G,1]=Z[R,G,1] − Jα(z) δZ

δJα(z)
−M(y, x) δZ

δM(y, x)
−N(y12; x12)

δZ

δN(y12; x12)
.

(14)

After going over from functionalZ to the Legendre transform, the mass operator6 and the
polarization operatorT must be considered as functionals asR, G and1. From definition
(14) one can obtain the dual relations to (11d) and (11h)
δV

δRα(z)
= Jα(z) δV

δG(y, x)
= M(y, x) δV

δ1(x21; y21)
= N(y12; x12).
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We now wish to return to our statement that the Green functions are the thermodynamic
average of thêTu-ordered products of field operators. The standard procedure for calculating
the Green functions is to apply Wick’s theorem that enables us to evaluate theT̂u-ordered
products of field operators as a perturbation expansion involving only wholly contracted
field operators. These expansions can be summed formally to yield different equations
of Green functions. The main disadvantage of this procedure is that the validity of the
equations must be verified diagram by diagram. For this reason we will derive a set of
nine independent exact equations for corresponding vertex and Green functions by using
the important property of the Legendre transform—its orthogonality,

δ2Z

δAi(x)δAj (x ′)
δ2V

δBj (x ′)δBk(x ′′)
= −δikδ(x − x ′′).

Here A1(x) = Jα(z), A2(x) = M(y, x), A3(x) = N(y12; x12) are the sources of the
corresponding fields andB1(x) = Rα(z), B2(x) = G(x, y), B3(x) = 1(x21; y21) are the
corresponding dual quantities. Thus takingi = 1, 2, 3 andk = 1, 2, 3 we obtain a set of
nine independent exact equations:

Dαβ(z, z
′) = D(0)

αβ (z, z
′)+D(0)

αγ (z, z
′′)0(0)γ (y, x|z′′)K(0)

(
x y ′

y x ′

)
0δ(y

′, x ′|z′′′)Dδβ(z
′′′, z′)

(15a)

Dαβ(z, z
′)0(0)β (y, x|z′)−K(0)

(
x ′ y ′′

y ′ x ′′

)
0β(y

′′, x ′′|z′)Dβα(z
′, z)

δ2V

δG(x ′, y ′)δG(x, y)

+Xα(x21; y21|z) δ2V

δ1(x21; y21)δG(x, y)
= 0 (15b)

−K(0)

(
x y ′

y x ′

)
0β(y

′, x ′|z′)Dβα(z
′, z)

δ2V

δ1(x21; y21)δG(x, y)

+Xα(x43; y43|z) δ2V

δ1(x43; y43)δ1(x21; y21)
= 0 (15c)

K(0)

(
x y ′

y x ′

)
0β(y

′, x ′|z′)Dβα(z
′, z) = K

(
x y ′

y x ′

)
0
(0)
β (y

′, x ′|z′)D(0)
βα (z

′, z) (15d)

K(0)

(
x y ′′

y x ′′

)
0β(y

′′, x ′′|z′)Dβα(z
′, z)0(0)α (y

′, x ′|z)−K
(
x y ′′

y x ′′

)
δ2V

δG(x ′′, y ′′)δG(x ′, y ′)

+Z(x21; y21|x, y) δ2V

δ1(x21; y21)δG(x ′, y ′)
= −δ(x − x ′)δ(y − y ′) (15e)

−K
(
x y ′

y x ′

)
δ2V

δG(x ′, y ′)δ1(x21; y21)
+ Z(x43; y43|x, y) δ2V

δ1(x43; y43)δ1(x21; y21)
= 0

(15f)

Xβ(x21; y21|z′)D(0)−1
βα (z′, z)− Z(x21; y21|x, y)0(0)α (y, x|z) = 0 (15g)

−Xα(x21; y21|z)0(0)α (y, x|z)+ Z(x21; y21|x ′, y ′) δ2V

δG(x ′, y ′)δG(x, y)

−R
(
x21 y43

y21 x43

)
δ2V

δ1(x43; y43)δG(x, y)
= 0 (15h)

Z(x21; y21|x, y) δ2V

δG(x, y)δ1(x43; y43)
− R

(
x21 y65

y21 x65

)
δ2V

δ1(x65; y65)δ1(x43; y43)

= − δ(x21− x43)δ(y21− y43) (15i)
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where the symbolδ(x21− x43) means

δ(x21− x43) = Asymm
[x1,x2]

{δ(x1− x3)δ(x2− x4)}.

The above nine equations assume a central role in our theory, as can be seen in the rest of
this paper.

3.3. Analytic properties of the Green functions and the elementary excitation spectra

Upon combining (15d) and (15e) one sees that the two-particle electron–hole Green function
satisfies the Bethe–Salpeter equation:

K−1

(
y x ′

x y ′

)
= K−1

e−ω

(
y x ′

x y ′

)
− I

(
y x ′

x y ′

)
. (16a)

Here we have defined the propagatorK−1
e−ω

(
y x ′

x y ′

)
as follows

K−1
e−ω

(
y x ′

x y ′

)
= δ2V

δG(x ′, y ′)δG(x, y)
− 0(0)α (y, x|z)D(0)

αβ (z, z
′)0(0)β (y

′, x ′|z′). (16b)

The kernelI

(
y x ′

x y ′

)
has the form

I

(
y x ′

x y ′

)
= δ2V

δG(x ′, y ′)δ1(x21; y21)
R0

(
x21 y43

y21 x43

)
δ2V

δ1(x43; y43)δG(x ′, y ′)
(16c)

where we have introduced the four-particle propagatorR0

(
x21 y43

y21 x43

)
defined by the

equation

R0

(
x21 y65

y21 x65

)
δ2V

δ1(x65; y65)δ1(x43; y43)
= δ(x43− x21)δ(y43− y21). (17)

By means of (17) one may rewrite the inverse two-particle Green function (16a) in the form

K−1

(
y x ′

x y ′

)
= KE−1

M

(
y x ′

x y ′

)
− 0(0)α (y, x|z)D(0)

αβ (z, z
′)0(0)β (y

′, x ′|z′) (18a)

where

KE−1
M

(
y x ′

x y ′

)
δ2V

δG(x, y)δG(x ′, y ′)
− δ2V

δG(x, y)δ1(x21, y21)
R0

(
x21 y43

y21 x43

)
× δ2V

δ1(x43, y43)δG(x ′, y ′)
. (18b)

In a diagrammatic languageKE
M can be obtained by subtracting from the two-particle Green

function K any diagrams that may be separated into two parts by cutting only a long-
wavelength phonon line. In the case when the existence of the four-particle states can be
neglected (if we setδ2V/(δ1δG) = 0 in (18b)) the propagatorKE

M assumes the standard
form of the two-particle Green function for ‘mechanical’ excitons when the Elliott exchange
interaction is included.

From the exact equations (15d) and (15c) one can obtain the Dyson equation for the
long-wavelength photon Green function

Dαβ(z, z
′) = D(0)

αβ (z, z
′)+D(0)

αγ (z, z
′′)5(L)

γ δ (z
′′, z′′′)Dδβ(z

′′′, z′) (18c)
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where5(L)
αβ is the self-energy part of the long-wavelength photons:

5
(L)
αβ (z, z

′) = 0(0)α (y, x|z)KE
M

(
x y ′

y x ′

)
0
(0)
β (y

′, x ′|z′). (18d)

The propagator (18b) is connected with5(L)
αβ and, therefore, it is of the first importance for

calculation of the dielectric tensorεαβ(Q, ω) (Koinov 1996).
Further, we will derive an equation for the four-particle Green function using the

method of Legendre transforms. If we combined equations (15g) and (15h) the following
relationship can be obtained

Z(x21; y21|x, y) = R
(
x21 y43

y21 x43

)
δ2V

δ1(x43; y43)δG(x ′, y ′)
Ke−ω

(
x ′ x

y ′ y

)
.

Insertion of the last equation into (15i) allows us to obtain the following Bethe–Salpeter
equations for the four-particle Green function

R

(
x21 y43

y21 x43

)
= R0

(
x21 y43

y21 x43

)
+ R0

(
x21 y65

y21 x65

)
P

(
y65 x87

x65 y87

)
R

(
x87 y43

y87 x43

)
(19a)

where the inhomogeneous termR0 is defined by (17) and the kernelP has the form:

P

(
y21 x43

x21 y43

)
= δ2V

δ1(x21; y21)δG(x, y)
Ke−ω

(
x y ′

y x ′

)
δ2V

δG(x ′, y ′)δ1(x43; y43)
. (19b)

It should be noted that the three Green functionsDαβ , K and R are not independent.
Insertion of (15d) into (15a) allows us to obtain the following relationship between photon
and two-particle Green functions

Dαβ(z, z
′) = D(0)

αβ (z, z
′)+D(0)

αγ (z, z
′′)0(0)γ (y, x|z′′)K

(
x y ′

y x ′

)
0
(0)
δ (y

′, x ′|z′′′)D(0)
δβ (z

′′′, z′).

(20a)

In a similar way, upon combining (18) with (15d) and using (15e) one sees that the following
relationship occurs

K

(
x y ′

y x ′

)
= KE

M

(
x y ′

y x ′

)
+KE

M

(
x y ′′

y x ′′

)
0(0)α (y

′′, x ′′|z)Dαβ(z, z
′)0(0)β (y

′′′, x ′′′|z′)

×KE
M

(
x ′′′ y ′

y ′′′ x ′

)
. (20b)

In order to obtain a relationship between two- and four-particle Green functions we use
(15f ) and (19a). The result is:

R

(
x21 y43

y21 x43

)
= R0

(
x21 y43

y21 x43

)
+ R0

(
x21 y65

y21 x65

)
δ2V

δ1(x65; y65)δG(x, y)

×K
(
x y ′

y x ′

)
δ2V

δG(x ′, y ′)δ1(x87; y87)
R0

(
x87 y43

y87 x43

)
. (20c)

From equations (20) one can conclude that the three Green functionsDαβ , K and R
have common poles. It has long been known (Gell-Mann and Low 1951) that any well
defined elementary excitation of wavevectorQ and energyωv(Q) of the system under
consideration manifests itself as a pole near the real axis in the frequency plane of the

function K

(
r1σ1 r3σ3

r2σ2 r4σ4
|u2 − u1; u4 − u3; z

)
. The latter is obtained from the Fourier

transform of the two-particle Green functionK

(
r1σ1 r3σ3

r2σ2 r4σ4
|u2−u1; u4−u3; iωp

)
by the
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analytic continuation of the set of points iωp along the imaginary axis into the appropriate
half of thez plane. Similarly, one can define the analytic continuation of the photon Green
function Dαβ(Q, z). If we restrict the range of frequenciesω to the neighbourhood of
positionωv(Q), we may write:

K

(
r1σ1 r3σ3

r2σ2 r4σ4
|u2− u1; u4− u3;ω

)
≈ 8vQ(r2σ2; r1σ1; u21)8

vQ∗(r4σ4; r3σ3; u43)

ω − ωv(Q)+ i0+
(21a)

Dαβ(Q, ω) ≈
AvQα (Q)A

vQ∗
β (Q)

ω − ωv(Q)+ i0+
(21b)

where 8vQ(r2σ2; r1σ1; u21) and AvQα (Q) are electron–hole and photon amplitudes,
respectively.

Further, we continue with the analysis of the analytic properties of the four-particle
Green function

R

(
x21 y65

y43 x87

)
=R

(
(r, σ )21 (r, σ )65

(r, σ )43 (r, σ )87
|u4− u2; u3− u1; 1

2(u4+ u2− u3− u1)|u8− u6;

u7− u5; 1
2(u8+u6− u7− u5)| 14(u4+u3+u2+u1− u8− u6− u7− u5)

)
.

It is well known that in the case ofn particles, whenn > 3, the kernals of then-particle
equations contain disconnected parts. Since the two-particle kernel and the two-particle
Green function do not contain disconnected parts, one should find from (20c) a relationship
between the connected part of the four-particle Green function

Rc
(
(r, σ )21 (r, σ )65

(r, σ )43 (r, σ )87
|iωm1; iωm2; iωp1|iωm3; iωm4; iωp2|iωp

)
and the two-particle ones. From this relationship we can conclude that the two Green
functionsK andRc have identical poles. The function

Rc
(
(r, σ )21 (r, σ )65

(r, σ )43 (r, σ )87
|iωm1; iωm2; iωp1|iωm3; iωm4; iωp2|z

)
is obtained by the analytic continuation of set of points iωp along the imaginary axis into the
appropriate half of thez plane. If we restrict the range of frequenciesω to the neighbourhood
of positionωv(Q), we may write:

Rc
(
(r, σ )21 (r, σ )65

(r, σ )43 (r, σ )87
|iωm1; iωm2; iωp1|iωm3; iωm4; iωp2|ω

)
≈ 9

vQ((r,σ )43;(r,σ )21|iωm1;iωm2;iωp1)9
vQ∗((r,σ )87;(r,σ )65|iωm3;iωm4;iωp2)

ω − ωv(Q)+ i0+
(21c)

where9vQ((r, σ )43; (r, σ )21|iωm1; iωm2; iωp1) are the four-particle amplitudes, which can
be obtained from the connected-kernel equation for the four-particle Green function.

The excitonic–biexcitonic-polariton spectrum can be calculated by searching for the
poles of the photon, two- and four-particle Green functions, which satisfy equations (18c),
(18a) and (19a), respectively. In what follows we will use the Bethe–Salpeter
equation (19a). To solve this equation we assume the following two simplifications. The
first one is to replace the inhomogeneous termR0 by the usual biexciton Green function.
The second simplification that is used concerns the kernel (19b): we take into account the
contribution to the kernel which involve only terms, proportional to the second order of
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δ2V/(δ1δG). In this case the exact propagator (16b) can be replaced by the following
two-particle Green function:

K
exc.pol.
e−ω

(
r1σ1 r3σ3

r2σ2 r4σ4
|u21; u43;ω

)
=
∑
µ

ϕµQ(r2σ2; r1σ1; u21)ϕ
µQ∗(r4σ4; r3σ3; u43)

ω − ωexc.pol.µ (Q)+ i0+
.

(22)

Here the polesωexc.pol.µ (Q) of the above function determine the excitonic-polariton
spectrum because this Green function describes the light propagation in crystals when the
biexciton contribution to the polariton formation is neglected andϕµQ are the corresponding
electron–hole amplitudes. The excitonic-polariton spectrumωexc.pol.µ (Q) can be calculated
from the dielectric functionε(Q, ω). In the case of direct-gap cubic semiconductors the
simple one-oscillator model for the dielectric function can be used:

ε(Q, ω) = εb
(

1+ 4πβ0ω
2
t (Q = 0)

ω2
t (Q)− ω2

)
(23a)

whereωt(Q) is the transverse exciton dispersion,εb is the background dielectric constant and
4πβ0 = 21LT /ωt(Q = 0) is the oscillator strength. In this model the excitonic-polariton
spectrum consists of two branches (the upper (µ = +) and the lower (µ = −)):

ωexc.polµ (Q) = 1√
2

[A±
√
A2− 4B2]1/2 A = c2Q2

εb
+ ω2

t (Q)[1+ 4πβ0]

B2 = c2Q2ω2
t (Q)

εb
. (23b)

The above two simplifications allow us to derive from the Bethe–Salpeter equation (19a)
the following equation for the excitonic–biexcitonic-polariton spectrum:

det

∥∥∥∥[ω −�m(Q)]δmm′ −
∑
µ

Amµ(Q)A
∗
µm′(Q)

ω − ωexc.pol.µ (Q)

∥∥∥∥ = 0. (24a)

Here�m(Q) (m is the complete quantum number) denote the poles of the Green functionR0

and they determine the biexciton dispersion curves. The matrix elementAmµ(Q) describes
the interaction between the biexciton with wavefunction9mQ(r1, σ1; r2, σ2; r3, σ3; r4, σ4)

and the excitonic component of the(µ,Q)-excitonic polariton:

Amµ(Q) = 〈9mQ| δ
2V

δ1δG
|ϕµQ〉. (24b)

If we take into account only the interaction between the biexciton ground state�0(Q) and
the two excitonic-polariton branches, then the equation (24a) assumes the form (3a), where
A±(Q) = A0±(Q).

4. Discussion

As emphasized earlier, the bipolariton model does not take into consideration the important
fact that the existence of four-particle bound states causes the additional polarization of
the crystal, and, therefore, the biexcitons modify the excitonic-polariton spectrum. For this
reason the bipolariton concept does not provide the correct spectrum of the system of interest.
The last statement can be illustrated by considering the elementary excitation spectrum of
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the system at the pointQ = 0. According to the bipolariton model the excitation spectrum
consists of two excitonic-polariton states�̃1,2 and the renormalized biexciton state�̃3:

�̃1 = ω−(Q = 0) = 1

2
[ωt −

√
ω2
t +�2

c ] ≈ −
�2
c

4ωt
= −1LT

2

�̃2 = ω+(Q = 0) = 1

2
[ωt +

√
ω2
t +�2

c ] ≈ ωt +
�2
c

4ωt
= ωt + 1LT

2

�̃3 = Re�̃0(Q = 0) = �0+10.

(25)

We note that not only does the excitonic-polariton spectrum (8a) differ from (23b), obtained
by the direct microscopic treatment, but near to the pointQ = 0 the lower branchω−(Q)
becomes negative as well. Therefore, one can conclude that the procedure of replacing
the initial electron–hole–photon Hamiltonian by the Hamiltonian (1a) leads to the wrong
results, especially in the low-energy part of the spectrum.

According to the direct microscopic treatment, the elementary excitation spectrum at
the pointQ = 0 is defined by (3b) and (3c):

�̃1 ≈ ωexc.pol.− (Q = 0) = 0 �̃2 ≈ ω̃t +1LT �̃3 ≈ �0+10 (26a)

whereω̃t = ωt(Q = 0)−10 and

10 ≈ |A+(Q = 0)|2
�0− ωt(Q = 0)

. (26b)

The quantity10 determines both the biexciton ground-state energy shift and the transverse
exciton energy shift. In our previous paper (Koinov 1996), based on the Dyson equation for
the photon Green function a similar exciton energy shift has been already discussed. In this
paper the shift (6b) has been introduced by means of the Bethe–Salpeter equation for the
four-particle Green function. By comparing1biexc, introduced in the previous paper with
the shift (26b), one can see that the values of these two quantities are almost equal. This
statement follows from the fact that at the pointQ = 0 the upper excitonic polariton branch
has a very small photon component, and, therefore, the calculation of10 can be done by
using the corresponding exciton wavefunctionFnQ=0

exc of the upper excitonic polariton.

5. Summary

In this paper we have analysed the bipolariton concept, which has been recently used to
calculate the elementary excitation spectrum of the electron–hole–photon system. In order
to go beyond this approximation we have developed a finite-temperature Green function
theory for the elementary excitation spectrum in the system of interacting electrons and
photons, which takes into account the four-particle electron–hole bound states. We have
shown that the bipolariton approximation can indeed by used for calculating the elementary
excitation spectrum in the photon–exciton–biexciton system for the biexciton part. This
concept does not provide the correct spectrum in the excitonic-polariton energy part, where
the existence of biexcitons must be considered. By using the direct microscopic treatment we
have obtained that even in a case without a pump wave the excitonic–biexcitonic-polariton
eigenmodes exist and those elementary excitations manifest themselves as common poles
of photon, and two- and four-particle electron–hole, Green functions.
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